Glial cells and volume transmission in the CNS.

نویسندگان

  • E Syková
  • A Chvátal
چکیده

Although synaptic transmission is an important means of communication between neurons, neurons themselves and neurons and glia also communicate by extrasynaptic "volume" transmission, which is mediated by diffusion in the extracellular space (ECS). The ECS of the central nervous system (CNS) is the microenvironment of neurons and glial cells. The composition and size of ECS change dynamically during neuronal activity as well as during pathological states. Following their release, a number of neuroactive substances, including ions, mediators, metabolites and neurotransmitters, diffuse via the ECS to targets distant from their release sites. Glial cells affect the composition and volume of the ECS and therefore also extracellular diffusion, particularly during development, aging and pathological states such as ischemia, injury, X-irradiation, gliosis, demyelination and often in grafted tissue. Recent studies also indicate that diffusion in the ECS is affected by ECS volume inhomogeneities, which are the result of a more compacted space in certain regions, e.g. in the vicinity of oligodendrocytes. Besides glial cells, the extracellular matrix also changes ECS geometry and forms diffusion barriers, which may also result in diffusion anisotropy. Glial cells therefore play an important role in extrasynaptic transmission, for example in functions such as vigilance, sleep, depression, chronic pain, LTP, LTD, memory formation and other plastic changes in the CNS. In turn, ECS diffusion parameters affect neuron-glia communication, ionic homeostasis and movement and/or accumulation of neuroactive substances in the brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 155: The Roles of Microglia in Neurodegenerative Diseases

Microglia is a type of glial cell located throughout the central nervous system (CNS), which is sensitive to CNS injury and disease. Responsibility of microglia as the resident macrophage cells for injuries suggests that these cells have the potential to act as diagnostic markers of disease beginning or progression. Function of Microglia is strongly synchronized by the microenvironment of brain...

متن کامل

P167: Key Role of Inflammation in Central Nervous System Damage and Disease; TNFα, IL-1

Inflammation is portion of the body's immune response and it is basically a host protective response to tissue ischemia, injury, autoimmune responses or infectious agents. Although the information presented so far points to a detrimental role for inflammation in central nervous system (CNS) disease, it may also be useful. CNS demonstrates characteristic of inflammation, and in response to damag...

متن کامل

Gestational diabetes influences retinal Muller cells in rat's offspring

Objective(s): The Muller cell is the principal glial cell of the vertebrate retina. The expression of Glial fibrillary acidic protein (GFAP) in the Muller cells was used as a cellular marker for retinal damage. This study was done to evaluate the effect of gestational diabetes on retinal Muller cells in rat's offspring. Materials and Methods: In this experimental study, 12 Wistar rat dams were ...

متن کامل

Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks.

Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (WT; point-to-point communication via private channels, e.g. synaptic transmission) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid). Volume and synaptic transmission become integrated because their chemical signals activat...

متن کامل

P 140: Stem Cells in Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS). Inflammation caused by immune cells destroy the myelin and then axon. CNS failure to complete repair results in permanent disabilities. Some types of stem cells have special potentials to repair these injuries and even cure MS. Neural crest stem cells with a mutual origin with CNS and the ability of differen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurochemistry international

دوره 36 4-5  شماره 

صفحات  -

تاریخ انتشار 2000